Scraping Real Estate Listings From Realtor Using Rust

Jan 9, 2024 · 6 min read

Web scraping is the process of automatically collecting information from websites. This is done by writing code to connect to websites, request data, and parse through the HTML to extract the desired information.

In this article, we'll explore a full code example for scraping real estate listing data from Realtor.com using the Rust programming language.

This is the listings page we are talking about…

Imports and Setup

Let's take a look at the initial imports and setup:

use reqwest;

use select::document::Document;

use select::node::Node;

use select::predicate::Attr;

use select::predicate::Class;

use select::predicate::Name;

This brings in the reqwest crate for making HTTP requests, and various types and predicates from the select HTML parsing library that we'll use later.

There's also a tokio import and #[tokio::main] attribute to enable asynchronous IO, since we'll be making an async HTTP request.

Make sure to have both reqwest and select installed by running:

$ cargo add reqwest
$ cargo add select

Making the HTTP Request

Next we construct the URL to scrape - a Realtor.com listings page for San Francisco:

let url = "<https://www.realtor.com/realestateandhomes-search/San-Francisco_CA>";

And define a custom User-Agent header to send with the request:

let headers = reqwest::header::HeaderMap::new()
    .insert(
        reqwest::header::USER_AGENT,
        "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36",
   );

We can then make the GET request with the reqwest client:

let response = reqwest::Client::new()
    .get(url)
    .headers(headers)
    .send()
    .await?;

This asynchronously sends the request and stores the response when it completes.

Checking the Response

It's good practice to verify that the request was successful before trying to parse the response content:

if response.status().is_success() {
   // parsing logic here...
} else {
   eprintln!("Failed to retrieve page. Status code: {:?}", response.status());
}

This checks for a 2XX status code before proceeding.

Parsing the Page with Selectors

Now that we have the page HTML content, we can use the select crate to parse and extract information.

First we convert the response body to a parseable Document:

let body = response.text().await?;
let document = Document::from(body);

Inspecting the element

When we inspect element in Chrome we can see that each of the listing blocks is wrapped in a div with a class value as shown below…

Then we find all listing blocks on the page using a CSS selector, looping through the results:

for listing_block in document.find(Class("BasePropertyCard_propertyCardWrap__J0xUj")) {
   // Extract listing data...
}

Extracting Listing Details

Within the listing loop, we can use additional selectors to extract details from each block:

// Broker info
let broker_info = listing_block
    .find(Class("BrokerTitle_brokerTitle__ZkbBW"))
    .next()
    .unwrap();

let broker_name = broker_info
    .find(Class("BrokerTitle_titleText__20u1P"))
    .next()
    .unwrap()
    .text();


// Status
let status = listing_block.find(Class("message"))
    .next()
    .unwrap()
    .text();

// Price
let price = listing_block.find(Class("card-price"))
    .next()
    .unwrap()
    .text();

And so on for other fields like beds, baths, square footage, etc. Each field has a CSS class or attribute selector that identifies the data to extract.

Some key points:

  • The .find() method locates nodes matching the provided selector
  • .next() gets the first matching node
  • .unwrap() panics if no match is found
  • .text() returns the text content
  • So these chained selector calls allow us to hone in on the exact data pieces we want.

    While this example targets Realtor specifically, the concepts are the same across different sites. Identify selector patterns that uniquely identify the data fields, then extract the text values.

    Printing the Results

    Finally, we can print the listing details extracted from each block:

    println!("Broker: {}", broker_name);
    println!("Status: {}", status);
    println!("Price: {}", price);
    // ...
    println!("-".repeat(50)); // separator
    

    This outputs each listing's details, with a dashed line separator between listings.

    The full code can be seen here:

    use reqwest;
    use select::document::Document;
    use select::node::Node;
    use select::predicate::Attr;
    use select::predicate::Class;
    use select::predicate::Name;
    
    #[tokio::main]
    async fn main() -> Result<(), Box<dyn std::error::Error>> {
        // Define the URL of the Realtor.com search page
        let url = "https://www.realtor.com/realestateandhomes-search/San-Francisco_CA";
    
        // Define a User-Agent header
        let headers = reqwest::header::HeaderMap::new()
            .insert(
                reqwest::header::USER_AGENT,
                "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36",
            );
    
        // Send a GET request to the URL with the User-Agent header
        let response = reqwest::Client::new()
            .get(url)
            .headers(headers)
            .send()
            .await?;
    
        // Check if the request was successful (status code 200)
        if response.status().is_success() {
            // Parse the HTML content of the page using select
            let body = response.text().await?;
            let document = Document::from(body);
    
            // Find all the listing blocks using the provided class name
            for listing_block in document.find(Class("BasePropertyCard_propertyCardWrap__J0xUj")) {
                // Extract the broker information
                let broker_info = listing_block
                    .find(Class("BrokerTitle_brokerTitle__ZkbBW"))
                    .next()
                    .unwrap();
                let broker_name = broker_info
                    .find(Class("BrokerTitle_titleText__20u1P"))
                    .next()
                    .unwrap()
                    .text();
    
                // Extract the status (e.g., For Sale)
                let status = listing_block.find(Class("message")).next().unwrap().text();
    
                // Extract the price
                let price = listing_block.find(Class("card-price")).next().unwrap().text();
    
                // Extract other details like beds, baths, sqft, and lot size
                let beds_element = listing_block
                    .find(Attr("data-testid", "property-meta-beds"))
                    .next();
                let baths_element = listing_block
                    .find(Attr("data-testid", "property-meta-baths"))
                    .next();
                let sqft_element = listing_block
                    .find(Attr("data-testid", "property-meta-sqft"))
                    .next();
                let lot_size_element = listing_block
                    .find(Attr("data-testid", "property-meta-lot-size"))
                    .next();
    
                // Check if the elements exist before extracting their text
                let beds = beds_element.map(|e| e.text()).unwrap_or("N/A".to_string());
                let baths = baths_element.map(|e| e.text()).unwrap_or("N/A".to_string());
                let sqft = sqft_element.map(|e| e.text()).unwrap_or("N/A".to_string());
                let lot_size = lot_size_element.map(|e| e.text()).unwrap_or("N/A".to_string());
    
                // Extract the address
                let address = listing_block.find(Class("card-address")).next().unwrap().text();
    
                // Print the extracted information
                println!("Broker: {}", broker_name);
                println!("Status: {}", status);
                println!("Price: {}", price);
                println!("Beds: {}", beds);
                println!("Baths: {}", baths);
                println!("Sqft: {}", sqft);
                println!("Lot Size: {}", lot_size);
                println!("Address: {}", address);
                println!("-".repeat(50));  // Separating listings
            }
        } else {
            eprintln!("Failed to retrieve the page. Status code: {:?}", response.status());
        }
    
        Ok(())
    }

    This implemented a full web scraper to extract Realtor listings data into structured fields that could be saved to a database, output to a CSV, or used in other programs.

    Browse by tags:

    Browse by language:

    The easiest way to do Web Scraping

    Get HTML from any page with a simple API call. We handle proxy rotation, browser identities, automatic retries, CAPTCHAs, JavaScript rendering, etc automatically for you


    Try ProxiesAPI for free

    curl "http://api.proxiesapi.com/?key=API_KEY&url=https://example.com"

    <!doctype html>
    <html>
    <head>
        <title>Example Domain</title>
        <meta charset="utf-8" />
        <meta http-equiv="Content-type" content="text/html; charset=utf-8" />
        <meta name="viewport" content="width=device-width, initial-scale=1" />
    ...

    X

    Don't leave just yet!

    Enter your email below to claim your free API key: